COAST:

The Controller's Assistant

William 11. Duquette

Jet Propulstion 1 .aboratory
California Institute of Technology
Pasadena, California 91109, U.S.A.

ABSTRACT

COAS J, the Controller's Assistant. is a semi-automated
player of the CBS wargame training simulation. It uses
rule-based techniques to mancuver a collection of
platoons through a complex infiltration mission in
responsc to a single high-1 velorder from a CBS
controller.

CDS is driven by orders from controllers of the
simulation. It delivers a great deal of internal state
information to the controllers’ work stations. COAST
monitors this information flow, and controls the
infiltrating units by sending orders of its own.

Infiltratingunits arc controlled by two tiers of rules.
Eachunit has a plan, or job-list, containing the jobs it
must successfully complete. Each job has a cluster of
job rules which enable the. unit to carry outthat job.
Over the job rules arc the control rules, which plan the
job-list for each unit and handle contingencies.

1 INTRODUCTION

This paper concerns the design of arule-basczl system to
do real-time analysis and control of a military training
simulation. The system, COAST, is written in 01'S5
and C. To understand COA ST, one must first understand
its environment: the Corps Rattle Simulation (CBS).

1.1 The Corps Bathe Simulation

CBS is a wargame/training simulation written in
SIMSCRIPT 11.5. ‘Fhe training audience consists of
brigade.-lcvcl commanders and staffs, and higher echelons
up to the corps level. The trainees arc located in
command posts as though a real war were in progress,
and communicate with their subordinate officers (c.g.,
battalion commanders) using normal military
communications. The subordinates, however, arc
playing a role; they arc realy operators of the CBS
system, They trandate the military orders they reccive
into terms the. simulation can accept.

Between 2.0 and 50 commanders and staffs arc being

trained during a typical training exercise; they interact
with hundreds of operators, called controllers, who in
turn interact with CBS.Yach has command of one or
more simulated military units, to which they send orders
viaa CBS work station. In return, the simulation sends
a wide variety of status reporis to the controllers, as
shown in Figure 1. Some reports arc displa yed
graphically, overlaid on a map of the battlefield. The
controllers relay this information back to the training
audit.ncc.

Onders Work

Simulation Station

Reports

Iiigure 1: Normal CBS Lataflow

The two conflicting sides in a CBS training exercise
arc called BILUFOR (blue force) and 01)101< (opposing
force). All trainces are on the BLUFOR side. The
OPFOR side is played by a team of specially trained
controllers. Running a CBS training exercise is labor-
intensive- the overal ratio of controllers to trainees is
typicaly 1:1 or higher, Cost-effectivencss would bc
impraved if the. ccmtrollcr-[cr-trainee ratio could bc
decreased without sacrificing training value.

1.2 An Automated |'layer

For many years, wc have been interested in developing
an automated player for CBS. The antomated player
would assist or replace @ human controller, improving
the controller-to- trainee ratio. The nominal problem
domain is battalion command, since that is the level at
which the. controllers operate.. At present, each simulated
battalion is manage.ci by crnc or more controllers; in the.
heat of battle, as many as four controllers might bc
needed. As wc envision it, the player would use rule-
based and robotics techniques, and would interact with
CBS just as a controller dots: by sending orders and

reading reports. Such a player might allow a single
controller m be responsible for several battalions; this
would bc a great savings in labor, especially cm the
OPFOR sick In addition, anautomated player can
increase the resolution of the training by playing the
battalions as groups of smaller units, such as companics
and platoons,

COAST, the Controller's Assistant, is our first step
toward an automated player. Written in C and a rule-
based language called 01'S5, it assists a human
controller in performing a complex and time-consuming
task: battalion infiltration. The essence of infiltration is
moving a large number of personnel from one location
to another, usually behind enemy lines, while avoiding
enemy notice. Since it is difficult for a battalion to
move quietly, the battalion generally splits into many
smaller units, which move in strict march order along a
predeterminéd route., as shown in Figure 2, infiltration
thus trades cohesion and communications for stealth,
Once the entire battalion reaches its destination, it
reforms- and most likely becomes quilt noticeable in
shortorder. A typica infiltration mission may last for
days, and takes place in a smal region. COAST
automaltes this process,

X Turnishing Battalion
e OO
X Platoon moving to 1.1)

D %%
Infiltrating Platoons
«00
Reassembled
L.up Battalion

Figure 2 A COAST Infiltration Mission

In response. to an order from a controller, as shown in
Figure 3, COAST will take. control of a battalion. The
battalion is split into platoons, mancuvered in a strict
march order along a mute, and reassembled at the far end.
Inthe meantime, COAST watches for contingency
situations, such as enemy activity, and cither handles
themitself, or requests aid from the controller. With
COAST's aid, acontroller may start such a mission, and
let it proceed with only occasional supervision,

For example, a particular mission might involve

infiltrating a battalion, by platoons, from a line of
departure, 10 alink-up point. First, the controller would
send an order to COAST, giving a complete specification
of the mission. Next, COAST would split each platoon
out of the battation unit, creating platoon units. Each
platoon would be ordered to move to the line-of -
departure, and then ordered to infiltrate to the link-up
point. As each infiltrating platoon arrived at the link-up
point, it would be ordered 1o link up with the platoons
which had already arrived, creating a single, larger unit.
When ail of the platoons have merge.d, the battalion has
been rcassembled at the link-up point. COAST
accomplishes this using standard controller orders, and
monitors mission progress by reading standard reports,

Reports

Figure 3: CBSDataflow with COAST
2 COAST AR CHITECTURE

COAST consists of two parts. The first isthe rule-based
system, which is called the Mission Operations
Manager, or MOM. It is written in OPSS,and is
concerned al most completel y with (he. problem domain.
The second part, called tile Server, is writtenin C. The
Server is the interface between the MOM and the rest of
CBS. The Server receives and processes orders from tile
controllers anti reports from the simulation; the Server
allows the MOM to send orders to the simulation. One
can think of the Server as thc MOM’s work station.
The Server and tile MOM together comprise COAST.
The Server's basic algorithm is as follows:

Receive acontroller order

Create a ncw mission

Create ancw instance of the MOM

Give control of the mission to the MOM

1 .o0p
Givenew reports to the MOM
Sendthe MOM’s orders, if any,
to the simulation
Until mission termination

In response m the controller's order, COAST creates a
new infiltration mission. At the mission start time, the
mission specifications and all pertinent battleficld data
are loaded into the MOM’s working memory, Then, the
MOM is give.n control and the loop begins,

The MOM'’ s basic algorithm is asfollows:

| .oop
Get reports from the Server
Upxlate battlefield mode]
Do analysis and control
Until mission termination

To behave reasonably, the MOM must always have
good knowledge of the simulated battlefield- that is, of
tile state of the simulation. Therefore, the MOM
maintains @ model of the batlleficld inits working
memory. The initial model is loaded into the MOM by
the Server with the mission specifications. The MOM
updates tile model with each new set of reports.

As cachrelevant set of reports is received, the. Server
loads the ncw datainto the MOM’s working memory.
Next, the MOM uses the data to update its balllc.field
model, untilit has a complete, consistent picture of the
battlcfield, Kach datum is fit into the structure, and a
varicty of facts arc inferred. For example, tile MOM
constantly tracks the distance of each infiltrating unit
from several pertinent locations. Finally, the MOM
analyzes the battlefield situation, and decides whether to
act. The MOM acts by sending one or more orders to
the simulation. The effects of those orders will be
learned as future reports arc received. Once the MOM
has taken dl necessary steps, the loop ends, and the
h40M waits for new reports.

1or instance, one kind of report COAST receivesisa
movement report: it says that a particolar unit has moved
to a ncw location, eg., unit 1/A/1-7SRNG is now at
UTM coordinate 331JUQ447365. This report is loaded
into working memory, andthe model maintenance rule
sets compute that 1/A/1-75RNG is within 100 meters of
the link-up point. The analysis and controlrules
determine that 1/A/1 -7SRNG can link up with its
comrades, and order the simulation to make it so.

The bulk of the processing dc.scribed here issimplein
concept, even if complex inimplementation, and will
not be discussed further. The step labeled "Do Analysis
and Control", however, corresponds to the brain of our
robot.

3 ANA LYSIS AND CONTROIL R ULES
3.1 Jobs and Roles

The previous section described how COAST keeps track
of each unit it controls, and noted that it monitors the
unit’s location, strength, anti so forth, COAST must
also keep track of what each unit is trying to do. fo
facilitate this, wc broke the basic infiltration mission
downinto a number of jobs.Figure 4 shows some of
the jobs units might do during a typica infiltration
mission, The battalion, pictured at the top, is furnishing
platoons to the mission. The platoons must move to
the line of departure, where they begin infiltrating,
Finally, as the platoons arrive at the link-up point, they
must merge with their predecessors. The jobs a unit
might do arc determined by its role, 1'or example, the
battalion’s role is to furnish; it clocs not stage, infiltrate,
or link-up. An infiltrating platoon will stage., infiltrate,
and link-up, but it dots not furnish,

5@ Furnishing

Staging

1.1 e®s

Infiltrating

° 00

X| infiltrating

L.up Linking-Up

Figure 4: Units and ‘1" heir Jobs

Each job is define.d by a rule set, which consists of
three kinds of rules: progress, success,and failure.
Progress rules arc what actually get the job done. Given
any reasonable state the unit might be in while doing
this job, there mustbe a progress rule to move it along
toward completing the job. Consider a unit with the
slaging job, If itdoecs not yet exist, it must be split out
of the battalion. Once it exists, it must be ordered to
move to the line of departure. These stalements arc
cmbryonic progress rules.

Success rules recognize that the job has been
completed successfully. A unit has staged successfully
when it is at the line of departure, the beginning of the

infiltration route. The success rule's only purpose is to
identify successful completion.

Yailure rules recognize that the job cannot be
completed successfully, for jerb-specific masons. For
example, suppose that the platoon cannot be split from
the furnishing battalion- perhaps the remaining
personnel arc too few to staff a new platoon-sized unit.
Clearly, the platoon cannot stage, since it camel even be
brought into existence. A failure rule wouldidentify the
failure, 1 ixternal forces [hat might prevent successful
completion will not be recognized by the job’s failure
rules. Combat, for instance, would prevent the platoon
from staging successfully, buthandling combat is not
part of a staging unit's job description. External
conditions arc the province of the control rules, described
below.

An infiltrating unit will nominally exccute three jobs
in sequence: staging, infiltrating, and linking-up.
Rather than writing special rules which say, for example,
“If a unit has successfully completed staging, it should
now begin infiltrating,” wc give the unitajob-list
containing the three jobs. As each job is completed
successfully, it is removed from the unit's job-list, and
the unit proceeds with the next job, This is done by a
control rule.

3.2 Control Rules

Control rules control units (and thus, the entire mission)
by manipulating their job-lists. The most fundamental
control rule. issequential execution; as mentioned above:
as each job issuccessfully completed it isremove.d from
the, unit's job-list. This allows the next job to begin.
I 'here are also initialization control rules, which assign
each UNit an initial job list based on its role, and
contingency control rules, which handle special
conditions.

A contingency rule recognizes that the job aunit is
doing is no longer appropriate, or that the job’s failure
flag has been raised. For example, it is inappropriate to
continue staging while under attack,

A contingency rule may take any of severalactions.
First, a job might bc inserted at the beginning of the
unit's job-list. Forinstance, infiltrating vnits usually
hide during the day. When day breaks, a contingency
rule puts the DAY-HIDE job atthe beginning of the job-
list for al units which arc currently infiltrating. When
night falls, the D AY-HIDI job succeeds, and the units
resume infiltrating- -provided nothing has happened in
the meantime.

Next, a unit might be given an entirely new job lisl.
Aninfiltrating unit which is fired upon too many times
is demorali zed, and will abort its mission. A
contingency rule clears the unit's job list, and gives it a

new one which will cause it to move 10 an abort rally
point.

In extreme case.s, the contingency rule will transfer the
unit to the controller, That is, CI(IAS'J will notify the
controller that the unit isin trouble, return control of the
unit to the controller,and take no further responsibility.
This is also the standard operating procedure when
COAST encounters problems that are rare or for which
solutions have not been implemented.

4 EVALUATION

The combination of control rules and job rules proved an
effective way to manage the unitsinan infiltration
mission. Wc belicve this technique can bc used, asis, to
amtomate other tasks as well. Nevertheless, there is
room for growth.

01' S5, unlike procedural languages, has very litlle
structure, There are only rules, which can work together
inconvoluted and obscure ways. It is difficult to
program a large system at the level of single rules
without become hopelessly lost. It is necessary to
impose structure on the language, preferably without
losing the. fluidity which makes a rule.-bascd language
attractive. Thedevelopment of tbc MOM has been one
of increasing structure and expressive power. From the
first, wc used several conventional 01'S5 control
mechanisms, such as subtasks and agendas. On top of
this foundation, wc built the main loop and the. rule sc(s
which update the battleficld model. On top of that, wc.
built the analysis and control rules.

Originally, the analysis and control rule set was very
unstructured. There were no job rules and control rules,
andno job-lists, Fachunit had a scalar state variable,
and control was based on its stale and al external
circumstances. For example, aunit infiltrating to the
link-up point might have the INFILTRATH-TO-1.UP
state, A unit that was hiding during the day might have
the D AY-111DI: date.. Kssentially, the dlate variable was
the MOM's summary of the unit's condition and current
goal. This proved completely unsatisfactory. }ach
stale had 1o have specific rules for each state it might
jump to; for example, at day break, INFILTRATE-TO-
LUP jumped to DAY-F1IDE, ‘1'0 ensure. that this rule
fired when it was supposed to, c.very other
INFILTRATE-TO-1.UP rule included the condition that
it was night time.. FEach time ancw unit stale was added,
wc had to consider al possible. transitions to other statcs,
Vinally, a scalar state could not encode enough
information. For example, @ unitin the D AY-111DL
state forgot whether it had been inthe INFII I"RA’ J |1-
“1'0-1 .UP state or the. ABORT-TO-RALLY-POINT date,
When night fell, it was not clear which state the unit
shouldreturn to.

The solution was, again, increased structure. The
individual jobs a unit might do were defined as job rule
sets, and the job list was born. Each job rule set is
concerncd only with that job; al higher-lcve] concerns
are the province of the control rules. Increased structure,
carefu]ly designed, yielded greater expressive power.
Note that the job rule/coutrol rule paradigm relics on the
fluidity of the underlying rule-basccl system.Jiach unit
has its own job, but al units pursue their jobs
completel y in parallel. Control rules arc active a the
same time. as job rules, but with higher priority, So that
contingencies arc handled immediately.

The control rules arc still rather unstructured. As
COAST's capahilities arc expanded, further structure will
be needed. The current paradigm alows the MOM to
manage a single, focused task.Inthcory, CO AST can
be extended to coordinate complex mMissions comprising
a number of interdependent tasks, FHach task would
control one or more units. In this scheme, COAST
would be given mission specifications and resources
(e.g., units), and would assign resources to tasks to
accomplish the mission. For example, COAST could be
ordc.reel to lake andhold a particular region. Given
appropriate resources, COAST might conduct a company
infiltration mission, attack atdawn with the restof the
battalion, and call on an artillery unit to provide fire
supporl.,

A1 present we arc enhancing COAST operationally:
making it amm-c user-friend] y, useful, and reliable part
of the. CBS system, In the future, wc hope to extend its
capabilitics along the lines give.n above, andto apply the
techniques to managing additional kinds of missions.

ACKNOWLEDGEMENTS

‘I"his work was sponsored by the U.S. Army Simulation,
Training, and Instrumentation Command, through an
agreement with the National Aeronautics and Space
Administration. Technical guidance was provided by the
U.S. Army National Simulation Center. The author
thanks Robert G. Chamberlain, Joseph 1', Fearey, and
Joseph 1. I'rove.mano for their comments and assistance,
both with this paper and with the development of
COAST itself.

AUTIIOR BIOGRAPHY

WILLLIAMH. D UQUETTE is a Member of the
Technical Staff in the Modeling and Artificial
Inteligence Applications Group at the Jet Propulsion
Laboratory. He received a D.A. degree in mathematics
and cconomics from Claremont McKenna College in
1985, and an M.S.degree inoperations research from
Stanford University in1986. e designed and

implemented COAST as part of Version 1.4 of the
(bps Battle Simulation,

